AP® PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Speed of light, $c = 3.00 \times 10^8$ m/s

Electron charge magnitude,

 $e = 1.60 \times 10^{-19} \text{ C}$

 $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$ Coulomb's law constant,

Universal gravitational

constant,

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg·s}^2$

Acceleration due to gravity at Earth's surface.

 $g = 9.8 \text{ m/s}^2$

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	C		
SYMBOLS	second,	S	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES				
Factor	Prefix	Symbol		
10 ¹²	tera	Т		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10 ⁻²	centi	c		
10^{-3}	milli	m		
10 ⁻⁶	micro	μ		
10 ⁻⁹	nano	n		
10^{-12}	pico	р		

VALUES O	F TRIGO	NOMETE	RIC FUN	CTIONS I	FOR CON	AMON A	NGLES
θ	0°	30°	37°	45°	53°	60°	90°
$\sin heta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	√3/2	1
$\cos \theta$	1	√3/2	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	√3/3	3/4	1	4/3	√3	∞

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

AP® PHYSICS 1 EQUATIONS

MEC	НΛ	NI	്യ

MECHANICS				
$v_x = v_{x0} + a_x t$	a = acceleration			
	A = amplitude			
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	d = distance			
0 10 2 1	E = energy			
$v_r^2 = v_{r0}^2 + 2a_r(x - x_0)$	f = frequency			
$v_x = v_{x0} + 2u_x(x - x_0)$	F = force			
$\sum ec{F} = ec{F}$.	I = rotational inertia			
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	K = kinetic energy			
iii iii	In amulus constant			

$$|\vec{F}_f| \le \mu |\vec{F}_n|$$
 $k = \text{spring constant}$ $L = \text{angular momentum}$ $\ell = \text{length}$

$$a_c = \frac{v^2}{r}$$
 $m = \text{mass}$
 $P = \text{power}$
 $\vec{p} = m\vec{v}$ $p = \text{momentum}$
 $p = \text{radius or separation}$

$$\Delta \vec{p} = \vec{F} \Delta t$$
 $T = \text{period}$ $t = \text{time}$

$$K = \frac{1}{2}mv^2$$
 $U = \text{potential energy}$ $V = \text{volume}$

$$\Delta E = W = F_{\parallel} d = F d \cos \theta$$
 $v = \text{speed}$
 $W = \text{work done on a system}$

$$P = \frac{\Delta E}{\Delta t}$$

$$x = \text{position}$$

$$y = \text{height}$$

$$\alpha = \text{angular acceleration}$$

$$\mu = \text{coefficient of friction}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\mu = \text{ coefficient of friction}$$

$$\theta = \text{angle}$$

$$\omega = \omega_0 + \alpha t$$
 $\rho = \text{density}$
 $x = A\cos(2\pi f t)$ $\tau = \text{torque}$
 $\omega = \text{angular speed}$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I} \qquad \Delta U_g = mg \Delta y$$

$$\tau = r_{\perp}F = rF\sin\theta$$

$$L = I\omega$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$\Delta L = \tau \Delta t \qquad T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$K = \frac{1}{2}I\omega^2 \qquad T_p = 2\pi\sqrt{\frac{\ell}{g}}$$

$$|\vec{F}_g| = k|\vec{x}|$$

$$|\vec{F}_g| = G \frac{m_1 m_2}{r^2}$$

$$U_{s} = \frac{1}{2}kx^{2}$$

$$\vec{g} = \frac{\vec{F}_{g}}{m}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

GEOMETRY AND TRIGONOMETRY

Rectangle	A = area
A = bh	C = circumference
	V = volume
Triangle	S = surface area
	b = base
$A = \frac{1}{2}bh$	h = height
L	ℓ = length
	m = width

Circle
$$w = \text{width}$$

 $A = \pi r^2$

$$C=2\pi r$$
 Right triangle Rectangular solid $c^2=a^2+b^2$

$$V = \ell wh$$

$$\sin \theta = \frac{a}{c}$$
 Cylinder

Vinides
$$V = \pi r^{2} \ell$$

$$S = 2\pi r \ell + 2\pi r^{2}$$

$$\tan \theta = \frac{a}{h}$$

Sphere
$$V = \frac{4}{3}\pi r^3$$

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

$$0$$

$$0$$

$$0$$