1. Use the written statements below to determine if acceleration is POSITIVE or NEGATIVE
a. An object moves in the negative direction while speeding up.
b. An object changes its velocity from $+10 \mathrm{~m} / \mathrm{s}$ to $-10 \mathrm{~m} / \mathrm{s}$.
c. An object moves in the positive direction while slowing down.
d. An object changes its velocity from $-4 \mathrm{~m} / \mathrm{s}$ to $-2 \mathrm{~m} / \mathrm{s}$.
2. A driver sits in a car that rests at a stop light. When the light turns green, the driver steps on the gas and accelerates forward. Before reaching a steady rate of speed, the driver reaches another stop light, and applies the brakes to bring the car back to rest. Create a qualitative (no numbers) Velocity vs. Time graph for the motion of the car.
3. A car drives in the negative direction with constant velocity. After a short time, the car speeds up without changing direction. Create a qualitative (no numbers) Velocity vs. Time graph for the motion of the car.
4. A car speeds up from rest to a velocity of $10 \mathrm{~m} / \mathrm{s}$ over a time interval of 2 seconds.
a. Create a quantitative (with numbers) Velocity vs. Time graph.
b. Solve for the displacement of the car during this time interval.
5. A car slows its velocity from $20 \mathrm{~m} / \mathrm{s}$ to rest over a time of 4 seconds.
a. Create a qualitative graphs (no numbers) of $\mathrm{X}-\mathrm{T}, \mathrm{V}-\mathrm{T}$ and $\mathrm{A}-\mathrm{T}$ for the car's motion
b. Solve for the acceleration of the car
c. Solve for the displacement of the car
6. Turn the Acceleration vs. Time graph below into its corresponding X-T and V-T graphs.
*Note, there are two potential answers for each graph. Can you find both?

