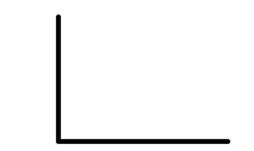
PhysicsIn5.com 11.03 - Free Response (Qualitative/Quantitative Translation Worksheet)

A cart of mass M is placed on a horizontal, frictionless surface and pulled to the right with force F, as shown in the left image. The horizontal acceleration of the cart is recorded as A_1 .

In trial 2, the same cart is pulled with an identical force magnitude, but directed at angle Θ above horizontal, as shown in the right image. The new horizontal acceleration is recorded as A_2 .



Three students argue about the recorded accelerations. Their individual arguments are shown:

- Student A: Acceleration A₂ is greater than A₁ because the force is now directed in both the horizontal and vertical directions, instead of only the horizontal.
- -
- Student B: The accelerations are the same because the same overall mass and force are used. F=MA. If F and M are the same, so is A.
- Student C: A₁ is greater than A₂ because the amount of force in the horizontal direction has decreased, and we always consider only horizontal forces for acceleration.
- 1. List one correct part of Student A's argument
- 2. List one incorrect part of Student A's argument
- 3. List one correct part of Student B's argument
- 4. List one incorrect part of Student B's argument
- 5. List one correct part of Student C's argument
- 6. List one incorrect part of Student C's argument

7. Students pulled horizontally on a cart of unknown mass with several different force magnitudes, recording the horizontal acceleration each time. Their results are shown in the table below. Create a graph that will help you solve for the mass of the cart that was used. Show all steps.

Force (N)	Acceleration (m/s ²)
1	4
2	8
3	12
4	16

8. A new cart with different mass was issued to the students. They again varied the pulling force, but instead of pulling horizontally, they kept the pulling angle at a constant 30-degrees above horizontal. Their force vs. horizontal acceleration results are shown in the table below. Create a graph that will help you solve for the mass of the cart that was used. Show all steps.

Force (N)	Acceleration (m/s ²)
1	1.17
2	2.32
3	3.43
4	4.62